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Abstract—The equations of one-dimensional radiative energy transfer are extended from their classical
astrophysics form to include walls of arbitrary radiative properties. The concepts of emissivity
and penetration length are examined. As an application, the case of the steady infinite flat layer is
considered, with conduction and radiation present, The wall conditions are so chosen as to give a good
model of a low-speed high-temperature boundary-layer. Itis found that the effect of the “long-range”
process of radiation is to smooth out the temperature profiles and relieve the sharp temperature
gradients at the cool wall. As a result, the application of the exact method yields a lower value of both
components of the total heat flux (radiation plus convection) than calculated previously by assuming
a temperature profile on the basis of conduction only. Such coupling of convective and radiative fluxes
is governed by the magnitude of a non-dimensional parameter, depending on the physical properties
and the flow geometry of the problem.

Résumé—Les équations de la transmission unidimensionnelle d’énergie par rayonnement ont été éten-
dues, a partir de leur forme classique en astrophysique, de fagon a traiter le cas de parois a propriétés de
rayonnement qguelconques. Les notions d’émissivité et de longueur de pénétration sont examinées. Le
cas d’une couche infinie, plane et permanente, en présence de conduction et de rayonnement, est traité a
titre d’application. Les conditions de paroi sont choisies de fagon 4 donner un bon modéle de couche
limite A basse vitesse et a haute température. On trouve que l’effet a grande distance du processus de
rayonnement est d’adoucir les profils de température et de mettre en relief les importants radients de
température a la paroi froide. Il en résulte que I’application de la méthode exacte fournit pour les
deux composantes du flux de chaleur total (rayonnement + convection) une valeur plus basse que celle
calculée précédemment en supposant le profil de température dii a la seule conduction. Une telle com-
binaison des flux de convection et de rayonnement est déterminée par la grandeur d’un paramétre sans
dimensions dépendant des propriétés physiques et de la géométrie de I’écoulement du probléme.

Zusammenfassung—Die Gleichungen fiir die eindimensionale Energieiibertragung durch Strahlung wird
von ihrer klassischen Form der Astrophysik erweitert, um auch Winde mit beliebigen Strahlungseigen-
schaften einzuschlieBen. Die Begriffe der Emission und der Durchdringungslinge werden untersucht.
Zur Anwendung wird eine unendliche flache Schicht im Beharrungszustand betrachtet, in der Leitung
und Strahlung stattfindet. Die Wandbedingungen werden so gewihit, dass ein brauchbares Modell fiir
eine Hochtemperaturgrenzschicht bei kleinen Geschwindigkeiten entsteht, Es zeigt sich, dass die
Wirkung der Strahlung die Temperaturprofile ausgleicht und den steilen Temperaturgradienten an der
kalten Wand abflacht. Die Anwendung der exakten Methode ergibt geringere Werte fiir beide Kompon-
enten des gesamten Wirmestroms (Strahlung und Konvection), als sie sich bei der Annahme eines
Temperaturprofiles fiir reine Leitung bisher ergeben hat. Das Zusammenwirken der Wirmestrome
durch Konvektion und Strahlung wird durch eine dimensionslose Kenngrosse bestimmt, die von den
Stoffwerten und der geometrischen Anordnung abhingt.

Abstract—H:iaccnueckile  ypaBHeHHA  OJXHOMEDHOTO  JIYYHCTOTO  [IEPEHOCA  DHEPTHM,
nCHoJb3yeMbie B acTpOQU3MKe pPacHpOCTPAHAITCA HA CIyYall Jy4YHMCTOTO TenIoo6MeHa B
OrPAaHUYEeHHOM ITPOCTPAHCTBE ¢ MPOM3BOJILHBIMY PAAUALMOHHEIMY XapaKTePUCTHKAMM CTEHOK.
PaccvarpuBaloTCeA NOHATHA CTENEHM YePHOTH TesIa U NIy OMHEl IPOHHKHOBEHHA. B KavecTBe
npuMepa paccMarpuBaeTcA Ciayvali CTAlMOHAPHOr'0 HEOrPAHMYEHHOTO IIIOCKOrO CJIOA IPH
HAJIMYNM TENAOHNPOBORHOCTH M JYYMCTOrO TelrooOMeHa. YCIOBUA HAa CTeHKAX BHIGpAHBI
TaknM 00pazoM, 4TOGH IIOJIYUMTh XOPOUIYID MOAEIbh HMB3KOCKOPOCTHOIO BEICOKOTEMIIEpa-
TYPHOTO NOTPAHAYHOTO CJIOA. YCTAHOBIEHO, 4YTO BIMAHME ,,JIaIbHONEACTBYIOLIErO

+ The work described in this paper was supported by the United States Army Rocket and Guided Missile
Agency, under contracts Nos. DA-11-022-ORD-2642 and DA-11-022-ORD-8130.
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IpoIlecca M3IYYeHHA B3aKIYaeTCA B CIUIKMBAHUM TEMIIEPATYPHHIX npoduieit M yMeHs-

IIEHUN ,,0CTPOTH* TEMIEPATYPHHIX I'DAAMEHTOB HA XOJIOJHOI CTEeHRe.

[Tpumenenne To4-

HOTO MeTO#a Aaér (oJjiee HMBKYIO BENMYMHY 0GEMX COCTABJIAIONIMX IOJIHOFO IOTOKA TEIlIa
(sLyumcroit M KOHBEKTHMBHOW) HeMKeNMM STO BBIYMCIANOCH IIpedNe, KOrga INpefnosarasiockh,

YTO TEMIEePATypHBUL NPOQUIL ONpPeAeseTCA TOMbKO TEMIOTPOBOHOCTBIO.

Hduas mauHoit

3a7a4n COYeTaHUe KOHBEKTUBHOI'O U JIYJUCTOTO IIOTOKOB PEryJIMpPyeTCs BEJIMUNHOIO 688})&3‘
MEPHOTO IapaMeTpa, 3aBUcAmero or (bnsu'{ewnx CBOMCTB M reOMeTPHH MOTOKA.

NOTATION
A(B), equation (34);
B, B,, Planck’s function (equations (6) and
(7
C, variable coefficient (equation (11) );
¢, velocity of light;
E, E,, radiative energy;
E.(t), equation (19);
h, Planck’s constant;
k, conduction heat transfer coefficient;
I, I,, specific intensity (equation (1) );
Jos emission coefficient;

L, plane layer thickness;
L, direction of incident radiation;

1 penetration length;

N,_., equation (37);

n, unit vector normal to surface do
(Fig. 1);

q, radiative energy flux;

r, reflectivity;

ds, elementary length along L;

1, integration variable (also: time, in
equation (1));

T, absolute temperature;

tr, transparency;

Vv, flight velocity;

», vertical co-ordinate (Fig. 2);

a, absorptivity;

g, emissivity;

g, spherical co-ordinate of L (Fig. 1);

K, absorption coefficient;

Iy equation (9);

v, frequency;

a, Stefan’s constant;

do, surface element (Fig. 1);

P, density;

T, 7,, optical thickness (equation (8));
b, spherical co-ordinate of L (Fig. 1);

dw, solid angle (Fig. 1).
Subscripts

8 gas;

w, wall;

v, frequency;

0, lower wall;
2, L, upper wall.
Superscript
* floating boundary.
INTRODUCTION

ENERGY transfer by radiation has been for a
long time a familiar problem to the physicists
concerned with high-temperature gases. Its
important role in specialized subjects of applied
physics, such as blast waves, plasma physics and
astrophysics has been the object of many
studies and these different domains have
attained a high degree of organization [1, 2, 11,
151

Technological progress has, meanwhile,
steadily increased the demand for engineering
designs capable of withstanding higher and
higher temperatures. The associated problems
of radiative energy transfer are becoming,
therefore, increasingly important in the field of
combustion [4, 5] and propulsion. They are also
to be considered, now, in very high speed aero-
dynamics [16] and new reactor concepts.

A major difference between the two classes of
problems just described is due to the existence of
solid boundaries in most engineering systems
using radiative media. In this paper, the mathe-
matical expressions of radiant energy transfer
developed in astrophysics will be extended to
include wall effects in simple one-dimensional
geometries. A typical application will be made to
a steady infinite flat layer, with wall conditions so
chosen as to give a good model of a low-speed
high-temperature boundary layer.

A. ONE-DIMENSIONAL RADIATION FLUX
Specific intensity I, and flux q,

The fundamentals of the theory of radiation
transfer in gases can be found in standard text-
books of astrophysics [1, 2]. Two important
quantities to be used extensively in this paper will
be redefined here. The notation adopted is that
of Kourganoff [3].
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Let dE, be the amount of radiative energy in
the frequency interval v, v 4+ dv transmitted
through an elementary surface do at a point P
during a time interval dr within a solid angle
dw (see Fig. 1). The normal n to the surface and

%V on do~ plane
do

FiG. 1. Radiation intensity symbols.

the direction L of the solid angle form an angle
0. I,, the specific intensity in the direction L is
defined as:

dE,

cos 8 do dw dv dt M

I, =1lim.

do, dw, dvs, dt—0

Accordingly, I, depends on the location of P
and on the direction L. Because of the intro-
duction of cos § in equation (1), the specificinten-
sity 7, is usually independent of the angle @
between the direction L and the normal n to the
elementary surface. It should be pointed out that
this definition is not the one most frequently

used in engineering ([17], equation 13-6), where’

cos § does not appear in the definition of the
intensity. As a result, “‘engineering” radiation
intensities vary with 8 (e.g. Lambert’s law). In
this paper, the “astrophysics” definition of the
intensity will be used (equation (1) ).

The flux ¢, of radiative energy across the
surface do, in th¢ frequency interval dv, is
obtained simply by summing up the quantity

dE,

== 0
dodide 1 cOosfdw

for all the directions L (dw = sin 8 df d¢). It is
convenient to split the net flux g, into the con-
tribution ¢} coming from the side of the normal

unit vector n and the contribution g, from the
opposite side:

/2 (2nr
gt = J I(0,$)cosOsinbdidgp (2)
0 0

q;:—-Jﬂ j "L, 4)cosbsinbdids  (3)

0

Equation of radiative energy transfer

The intensity, on a length ds, along the direc-
tion L, is attenuated by absorption and scatter-
ing away from the direction L, while it is rein-
forced by the energy emitted by the particles
along L and the scattering of photons from other
directions into the direction L.

The intensity I, is therefore determined by
the equation:

di,
ds

= —« pl, + pj, “)

where «, and j, are, respectively, the absorption
and emission coefficients [3]. It is further shown
in [2, 3], that, provided the gradients of tem-
perature are not too considerable and the
densities not too small, “local thermodynamic
equilibrium” can be assumed and equation (4)
can be written:

1 dl,

T I, — B, Q)

where B, is Planck’s function [2]:

2h a

B(1) = c® exp (W/kT) — 1

(6)
with
© ]
_ —_ 4
B—L Bydv=_T )

Specific intensity in one-dimensional problems

A glance at equations (2) and (5) shows that
all radiation problems but those with the
simplest geometry, will be difficult to solve.
In this study, only one-dimensional geometries
will be discussed.

It is convenient to define at this point the
optical thickness T, such that:

dr, = px, dy ®)
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where y is the privileged direction of the one-
dimensional problem illustrated on Fig. 2. If 6
is the angle between the direction L and the
negatiye (downward) y-direction, then:

dy = —u ds where p = cos 0 €]

® ®
1. T,

J © f
yg 7%" p/ W@ \@ rt
o @ ]

F1G. 2. Multiple reflexions in a plane layer.

Equation (5) can then be rewritten:

dI )
[ 'd;; - Iv - Bv (10)

The solution 1, (+,) of equation (10) is simply
obtained by the variable coefficient method:

I, = C(7.) exp (7./w) (1D

The function C(=,) is, after substitution of
equation (11) into equation (10):

-
ety = o = | 2 exp (o ar 12
Ty

where 7% is an arbitrary value, to be determined
by the boundary value of the problem. For
instance, the radiation directed upwards in
Fig. 2 will be determined by the condition at the
lower wall: =) = 0. After substitution, equation
(11) becomes:

’rl/ dt
I = J B(tyexp {—(t — n)p}— +
o e

+ 17 @) exp (n/p)  (13)

Similarly, the radiation directed downwards
will be determined by the conditions at the
upper wall:

Tyg dt
=1 Bexp{—(t—7)pu}-+
Ty I

¥

+I7 (r) exp {(r —7o)/e}  (14)

Radiation flux in one-dimensional problems

Since we confine ourselves to one-dimensional
problems, equations (2) and (3) can be integrated
with respect to ¢. One obtains:

1
wxb{mmmL (15)
JO
-1
w=%[nme (16)
1]

It is then a simple matter to substitute
equations (13) and (14) into (15) and (16). The
result is:

Ty
w:%j&m@mmom+
0

+2¢7(0) E3(r)  (17)
gy = 2m ijsz () Ey(t — =) dt +
Ty
+ 2‘7: (1) E3 (72 — 7) (18)

where the dependence on p appears through the
functions:
1

w2 o=t du
0

E.0=| (19
These functions are conveniently tabulated by
Kourganoff [3]. The net flux g, is the difference
between equations (17) and (18).

To obtain the total flux, it is necessary to
integrate the flux expressions for all wavelengths.
To simplify the discussion, the medium under
study will be assumed to be gray: by definition,
the absorption coefficient «, will then be inde-
pendent of the frequency » and so will be the
optical thickness 7,. The only wavelength-
dependent function left i the expressions
derived above, will be Planck’s function {equa-
tion (6)). It can therefore be integrated
separately (equation (7)), and the subscript »
will be dropped from the rest of the paper.

B. WALL EFFECTSt

The second terms, on the right-hand side of
the expressions (17) and (18) of ¢~ and ¢*,

+ Part B of this paper is a condensation of a more
detailed study made by the Senior Author in Report No.
A-59-8, School of Aeronautical Engineering, Purdue
University, Lafayette, Indiana.
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account for the contribution of the wall to the
radiative flux. Whenever walls are non-existent,
as it is the case in star photospheres, this term
disappears and the expressions (17) and (18)
take their classical Milne formulation [3].

In general, however, the contribution from the
wall is determined by its absorptivity a,, its
emissivity €,, its transparency tr, and its
reflectivity r,. The relations between these
quantities are:

Qy + try + 1, =1 (20)
@1

The flux downwards g+ in the slab geometry
shown on Fig. 2, is at a given station 7, made of
several components:

Ay = €y

(1) the flux from the gas slab 7 — =,
T

2 j *B(1)Ey(t — 7 dt
T

(2) the flux from the upper wall, attenuated
2mey B(7p) Eg(my — 7)
(3) the flux from the gas slab 0 — 7,, after
reflection on the upper wall and attenua-
tion

-
{ 2ﬂj B (1) E (t — ) dt }2r2 E; (75 — 7)
0
(4) the flux from the lower wall, after two
attenuations and one reflection:
27 €o B(0) E3 (15 — Q) 1y 2E3 (73 — 7)

(5) the flux from the gas slab 0 — 7,, after two
reflections and two attenuations:

J T2 3
2r | B E (1) dtf X

L 0

X ro2E3 (13) 13 2E4 (75 — 1)

(6) the flux from the upper wall twice reflected

and three times attenuated

27 €3 B(1y) E5 (To)rg 2E5 (19)r3 2E3 (72 — 7)
@. ..

It is to be noted that the contribution from the
upper wall in (6) is equal to its contribution in
(2), except for the attentuation factor:

4rory E3 (73)

sete., ...

due to two additional reflections. The contribu-
tion of the wall along a ray which has been
reflected 2» times, is similarly attenuated by a
factor:

[4rors EE (75)]"

The total contribution of the upper wall is
therefore equal to:

2n 6B EsC— )| E faron B3 ()]
which can be rearranged {4ryr, E2(7,) < 1} as:

2

T“—%m € B(7)) Ey (13 — 7)

(22)

Using the same method to account for the
other contributions to the flux, the expression of
the net flux across station 7 is therefore:

T
g=qt—q = 27.[ 2B(t)Eg(t—-r)a't—
T

— 2 JT B Ey(r — t)dt +

.
+ I—_MEE?%—(TZ){ € B(rp) E3(1y—7) —
— €9 B(0) E5(7) +
+ < B(O) Ey(r) 2r, Ea("'z —7)—
— & B(7y) E5(7y) 2rg Es(7) +
2y Ey(ry— ) j%(t) Ey (t— ) di —

0

— 2, Ea(T)JT2 B(t) Et) dt +
4 drgry Eq(ry) E(rs — 7) J BO) Ey(r) dt —

— Arory Eo(7y) Eg(7) J:z B(t) Ex(t — 75) dt}
(23)

This lengthy expression is the most general
form of the flux through a one-dimensional
non-scattering mediumt. Among its many

t A completely general form, including non isotropic
scattering, is under preparation by R. Viskanta, School
of Mechanical Engineering, Purdue University.
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applications to special cases are familiar
formulas.

(a) Slab of very large thickness (star photo-
sphere or blast waves):

eo=€2:r0=)‘2:0 Tg—> O

g =2 rB(:) Eft — vy dt —

— r B(t) Et) dt

equation (11-4) of [3].

(b) Transparent medium between two gray
parallel plates:

k~0—>7~0,Ef(r)~Ef0) =%, e=1-7r
1
e+ 1/eg— 1
equation (4-5) of [3].

(c) Absorbing medium between two black
body plates at same temperature T,:

q=0o(T;—T7)

ro=r, =0, ¢g= ¢ = 1

g =2 j:z B(¢) Ext — =) dt —

r
— 2 J B(r) Ey(1) dt +
0
—+ dar B(7y) Eg(7y — 7) — 4= B(0) Eo(7)
Assume also 7<€1; then E,~1, E;~1/2—1:
L ¥
q= 2j oT* prdy — ZJ o prdy -+
¥ 0

+ o(T§ — T3) — 20T pxc (L — y) + 20T pry
At the lower wall, y = 0, = = 0, and since
T{} = T2 = Tw,
L
G = Zj oTHprdy — 20T % prcl
0
and, since 2pxLl = ¢ (equation (27)),
this is equivalent to:
9w = o'(evT; — a,Ty)
equation (4-57) of [5].

C. PHYSICAL PROPERTIES

With these expressions of fluxes and intensi-
ties available, it is now possible to describe the
physical properties of the medium, in a form
more directly applicable to transfer problems.

Emissivity ¢ of a constant-temperature gas layert

A simple application of equation (23) consists
of the constant-temperature slab, with a trans-
parent upper wall and either a cool [B(0) ~ 0],
black-body (r, = 0) lower wall, or a transparent
lower wall. The expression of the radiant flux on
either face of the slab, is therefore:

g — 2n rzB(t) Ej(t) dt 24)
and 0
= 291"4JT2 Ey(f)dt = — 20T r d [E«(D)]
and since Es(OO) — 1, [see (312)] 0
¢ = oT*[1 — 2 Ey(ry)] 5)

If, furthermore, the medium is optically thin
(i.e. 7<€1), E4(7) can be written in good approxi-
mation (31a):

E{r)~t—17
Hence: g = oT*{1 —2(} — 7o)}
== 2rp0T?

= 2pxleTt (v, <€ 1) (26}

where L is the physical thickness of the layer
corresponding to 7. It is then natural to call the
quantity 2pxL the emissivity e of the gas layer:

€

5 =2pw @7

This convenient ratio has been tabulated, for
instance, in {6] for high-temperature air. The
coeflicient « can be obtained directly from this
relation.

t This derivation of the relationship between e and «
was suggested by W. Glauz, School of Engineering
Sciences, Purdue University. It avoids the difficulty met
in [6], in which the contribution of grazing rays in the
slab (very large p«s), is used in an “optically thin”
approximation (small pxs).
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Penetration length |

In the case studied above, equation (25) shows
that, if there is a transparent or no upper wall
a black-body radiation flux to the lower wall
will be achieved only for 7, > o0 (where E5;—0).
The intensity variation along a beam of arbitrary
angle (arbitrary fixed p) is, at the lower wall
(= = 0) according to equation (14):

oT?
b
I T

Ty d
e (i) =

5‘%" {1 — exp (—ra)} (28)

b,

4 4
T R
v 77;1,

and, for optically thin layers (7,
29

It can be concluded from these two equations
that both 7 and ¢ depend on the absorption
properties of the medium, only through the
optical thickness -. The optical thickness is
therefore a useful dimensionless concept and is
refered to often as the Bueger number (Ngy) in
the Russian literature [7].

A useful index of the absorption properties of
a substance is also the physical thickness /
corresponding to an optical thickness unity:

= l
pK

This “penetration length” / has been discussed
in [8]. It is shown in Fig. 3 for high-temperature
air in terms of temperature and density ratios,
using the values of ¢ from [6].

If the characteristic dimension L of the prob-
lem under study is much less than /, then

1':—?—<1

and the “optically thin” layer approximation of
equation (29) can be used. We note that in
equation (29), the contributions of all the
infinitesimal layers forming a layer of finite
thickness L, are additive. Physically, this means
that in optically thin layers, the energy radiated
in any part of the layer is not absorbed by the

87

other parts. This is a great simplification in
some transfer problems in re-entry aerodynamics,
where for most altitudes (p <€ po), velocities
(V< 35,000 ft/sec), and vehicle sizes (L<100 cm):
L < | as illustrated in Fig. 3.

Using smissivity values from
Kivel & Boiley (6)

L 1 Love 1 L

L
Alt. 120,000t To 20 30 40 v, k ft/sec

b

40 50 ¥ kfirsec

. 1 l 1 !
Alt. 250,000t o 20 30

FiG. 3. Length of penetration / = 1/p« in aerodyna-
mic problems.

On the contrary, if / € L, intermediate absorp-
tion takes place and at the limit, / plays the role
of a mean free path (Rosseland), leading to a
differential form for the flux expression ¢. This
is often a considerable mathematical simplifica-
tion which is justified in many cases {5, 7, 10],
including high temperature (7 > 10,000°K), large
size (L ~ 10* cm) blast waves in air [11].

D. THE PLANE-LAYER PROBLEM

The determination of the temperature profile
and energy flux across an infinite plane layer of
uniform thickness and arbitrary wall tempera-
ture, is a classical problem of conduction heat
transfer [4], even when chemical reactions occur
in the layer or at the walls [14]. The energy
conservation equation to solve is then in purely
differential form.
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The energy conservation equation

This problem is greatly complicated, however,
when radiation contributes appreciably to the
energy transfer. In this case a complex integral
term, equation (23), is added to the convection
flux. Unless this new term can be reduced to a
differential form, as for some cases discussed in
Section C, no closed solution is available to this
class of problems.

In this paper, a numerical solution to the
steady-state plane-layer problem is presented.
The solution can be applied to the fluid-layer
problem (Couette flow) if the velocity gradients
are not too large (no energy dissipation term in
the energy equation). Such a simple meodel,
showing a close analogy with the boundary-
layer problem in high-temperature flow, is
considered here. The upper wall is transparent
(emissivity €, = 0, reflectivity r, = (), and the
lower wall is an opaque gray surface (emissivity
eq, Teflectivity rg = 1 — ¢). Equation (23) re-
duces, in this case, to:

g =2 J723(t) Eft — 7)dr —
—2m jTB(t) Ey(r — 1) df — 2meq BO) Ex(7) —
0

— 4y Eo(7) j:zB(r) E(t)di (30)

The physical meaning of the four terms on the
right-hand side of equation (30) is, respectively:

(a) the energy radiated past the elementary
slab = by all the elementary slabs located
above (r <t < 7);

(b) the energy radiated past the elementary
slab = by all the elementary slabs located
below (0 <t < 7);

(c) the fraction of energy radiated by the
lower wall that reaches the layer =, the
other fraction being absorbed by the layer
(0 —7);

(d) the fraction of the energy radiated by the
slab to the lower wall, after partial reflec-
tion by the lower wall and partial absorp-
tion of the layer (0 — 7).

Substitution of this value of ¢ into the energy

conservation equation for the one-dimensional
steady state:

k —Z§ -+ ¢ = constant (31)
yields a non-linear integro-differential equation
that is satisfied by a temperature distribution
T(y) to be determined.t In the general non-gray
case, this same method would apply with an
additional integration of the radiative terms for
all wavelengths.

The solution of the aerodynamic flow problem

A further (but not essential to the solution)
simplification to the aerodynamic problems in
radiant media is due to the low optical thick-
nesses 7 involved (i.e. high penetration lengths /,
as seen on Fig. 3). In this case, Kourganoff
{[3], p- 255) shows that

Eft) =1 — 0(1)

3la
Efty =4 —t + 0(r%) G1a)

where 0(¢*) means “terms of order » and higher”.
Substituting into equations (30) and (31), one
sees that the contribution of the variable part of
Ey(t) is a second-order term in ¢, which can be
neglected.

The physical meaning of this simplification
has already been found in the preceding section:
in an optically thin layer, the energy radiated by
any elementary thickness of the layer is not
absorbed by the rest of the layer. ¢ can then be
written:

Ty T
g =2m J B(t)dr — 271"[ B(t)dt —
T )

T
—2meq B(O) (3 — 7) ~«2-n'roj 2B(t) dt
0
and since rq = 1 — ¢, (opaque wall),

.
q= 21754 *B(t) dt — me, BO) —
0

r
— 471"{ B(t) dt + 2mey BO)T
o

+ Once the distribution T(-) is established, T(y) is
easily obtained through the relation dr = p« dy.
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or:
-
g = 2mey B(O)r — 41'rj‘ B(t) dt + constant
L

After substitution into equation (31), the
energy transfer equation is:

k Z—f + 2meg BO) v — 4n JTB(t) d=C (32
0

where C is a constant. It is left now to determine
the profile 7{y) which satisfies this question. It
can be further simplified if the optical parameters
are used:

dB = L doT0dT (33)
T
dr = prdy
After substitution in (33):
T
A(R) ~d,§——4‘nr B{[\df«LGg-B(v-r:f' (34)
s dT Jo \~s T [ R N \ 7

where A = kn(px/40T?), hence a function of B
through T.

This equation is of a non-linear integro-
differential type for which no closed solution is
available. Furthermore, in the case of most
chemically-active gases such as high-tempera-
ture air, there is no closed formulation for either
k. x or p since the latter, at constant pressure, is a
function of the compressibility Z. Both k and Z
are tabulated for high-temperature air in [12].
For these two reasons, the solution of equation
(34) is only possible by iteration, like most other
problems of radiative transfer.

This iteration is performed without difficulty
when equation (34) is integrated and the two
boundary conditions of given temperatures at
the walls are used. The process will converge for
physical reasons, if the temperature profile used
as the first approximation is that due to con-
duction alone, provided the optical thickness =,
has a physical meaning.

It is possible to convert the “optical” solution
B(7) into a “physical” solution 7(y) by using the
definition (33) of B and :

Bm\1/4 T
T= (f) and y =j L
o pPK

0

(35

Note that the co
established only after the temperature profile
T(r) has been established, because of the
dependence of « on temperature. This point is of
special importance since only a certain class
of optical lengths ~ have a physical correspon-

dence y in this problem [13].

LANSPULNLARS LV 8L

esnondence v — 7 is to bhe
¥ rist

RESULTS AND CONCLUSIONS

Two numerical cases are presented on Figs.
4 and S for low and high values of T, respec-
tively. On each diagram is shown the profile that
would be obtained without radiation (which was
used as the first try in the iteration) as well as the
profiles obtained including radiation for lower
wall emissivities ¢, = 0, 3 and 1. The following
general remarks can be made:

1. Whenever the wall effects are small (¢y = 0, or

o # 0 but Ty < Ty)

To insure a constant total flux of energy
across the gas layer, it is necessary for the con-
vective flux variations to be compensated by
opposite variations of the radiative flux,

Now, the radiation emitted by the gas layer
near both limiting planes (no wall effects con-
sidered), is directed towards the outside, in the
upper direction near the upper wall and in the
lower direction near the lower wall. It is then
expected that this radiative flux reversal across
the layer will be compensated by an increased
convective flux near the hot wall and by a
decreased one near the cool wall. This is illus-
trated in Figs. 4 and 5 for the case ¢4 = 0 (no
wall effects): Larger temperature gradients are
introduced by radiation near the hot wall (as
compared to the purely conductive case) while
smaller temperature gradients are found near the
cool wall. Convection to a cool wall is therefore
reduced if the layer radiates. As can be seen on
Fig. 4, this conclusion also applies practically
for all possible emissivities of the cool wall,
because of its relatively low B(0).

Although the additional radiative transfer
makes for a higher total heat flux through the
flow, it is therefore apparent that calculating this
additional radiative flux to the cool wall by
simply using the non-radiative temperature
profile would lead in this case to an excessive
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value for both convective and radiative fluxes.
If, in addition, the lower cool wall is perfectly
reflective, the total heat transfer to the wall
(q. alone, in this case) is effectively reduced by
the presence of radiation.

2.Whenever the wall effects are important (e, 7 0
and Ty > Ty)

A fraction of the energy radiated by the hot
lower wall is absorbed by each gas layer
2mpreoB(To)dy; hence, a continuous decrease
of the wall flux on its path upwards on Fig. 5.
This contribution can be conveniently broken

down into a constant flux ¢,B(T) across the
layer, minus a flux in the downward direction

2ﬂj €0 B(T,) dt

which increases from zero at the lower wall to a
maximum value at the upper wall. This arrange-
ment is useful, because it is seen from equation
(32) that only the variable part of the fluxes
affects the temperature distribution.

This variable downwards flux is often larger
than the variable flux due to the radiation of the
gas layers themselves:

T jTB(T) dt

This is especially true for the cooler layers where
€,B(T,) > B(T) for most values of ¢, and T; in
this case, these two radiative effects, which
determine alone the temperature profile in the
problem, introduce a net radiative flux down-
wards. In opposition to the case where wall
effects are negligible, the temperature gradients
at the cool wall are therefore larger than they are
without radiation (as can be seen in Fig. 5): this
adjustment of the temperature profile compen-
sates in part the net downward radiative flux at
the upper cool wall by a larger upward con-
vective flux. Another compensation comes from
a reduction of the sum of these two variable
fluxes as can be seen at the lower wall, where
larger emissivities correspond to lower tempera-
ture gradients and convection rates than for
e, = 0.

3. In general

An increased layer thickness will increase the
role of radiation while decreasing the tempera-
ture gradient and thus the convection flux.
Inversely, radiation effects will be relatively
unimportant in very thin layers. The problems of
the type considered here, correspond to the
intermediate case where convection and radia-
tion are of the same order of magnitude.

It is convenient to characterize these three
classes of problems by writing an equation in
non-dimensional form:
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A(ry) o 2 dB
2 (B)4 dr
— 4n r [B)— 3 BO)dr =const.  (36)
where
. A(B) 5 B . T
A B = ey _B S d T —
B =T " s5m™

In equation (36), the following ratio plays a
special role:

k

— A () _
Ni-e = T ek 4o T3

3
T2

@37

T=Tg

The magnitude of this non-dimensional para-
meter N,_, (r-c¢ for radiation-convection)
determines the relative role of the convective
term (the first term of equation (36)) vs. the
radiative terms. For very large values of N,_,,
convection is the only appreciable transport
process while radiation is the important process
for low values of N,_,.
A physical interpretation of N,_, is also:

_ k(T/D)

" 2e0 T}

N,_. (38)

In equation (38), the numerator is a typical
conductive heat flux from the hot wall across the
gas layer and the denominator is the radiative
flux from the gas layer assumed arbitrarily at
the hot-wall temperature. This parameter is of
the same family as the non-dimensional quan-
tities discussed in [7] and {9].

N =

& L B W

10.
11.

12

13.

14
15.

16.

17.
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